Score: 0

On lead-lag estimation of non-synchronously observed point processes

Published: January 5, 2026 | arXiv ID: 2601.01871v1

By: Takaaki Shiotani, Takaki Hayashi, Yuta Koike

Potential Business Impact:

Finds which stock trades happen first.

Business Areas:
Lead Management Sales and Marketing

This paper introduces a new theoretical framework for analyzing lead-lag relationships between point processes, with a special focus on applications to high-frequency financial data. In particular, we are interested in lead-lag relationships between two sequences of order arrival timestamps. The seminal work of Dobrev and Schaumburg proposed model-free measures of cross-market trading activity based on cross-counts of timestamps. While their method is known to yield reliable results, it faces limitations because its original formulation inherently relies on discrete-time observations, an issue we address in this study. Specifically, we formulate the problem of estimating lead-lag relationships in two point processes as that of estimating the shape of the cross-pair correlation function (CPCF) of a bivariate stationary point process, a quantity well-studied in the neuroscience and spatial statistics literature. Within this framework, the prevailing lead-lag time is defined as the location of the CPCF's sharpest peak. Under this interpretation, the peak location in Dobrev and Schaumburg's cross-market activity measure can be viewed as an estimator of the lead-lag time in the aforementioned sense. We further propose an alternative lead-lag time estimator based on kernel density estimation and show that it possesses desirable theoretical properties and delivers superior numerical performance. Empirical evidence from high-frequency financial data demonstrates the effectiveness of our proposed method.

Page Count
52 pages

Category
Mathematics:
Statistics Theory