Score: 1

A Dynamic Retrieval-Augmented Generation System with Selective Memory and Remembrance

Published: January 4, 2026 | arXiv ID: 2601.02428v1

By: Okan Bursa

Potential Business Impact:

Makes AI remember important things better and faster.

Business Areas:
Augmented Reality Hardware, Software

We introduce \emph{Adaptive RAG Memory} (ARM), a retrieval-augmented generation (RAG) framework that replaces a static vector index with a \emph{dynamic} memory substrate governed by selective remembrance and decay. Frequently retrieved items are consolidated and protected from forgetting, while rarely used items gradually decay, inspired by cognitive consolidation and forgetting principles. On a lightweight retrieval benchmark, ARM reaches near state-of-the-art performance (e.g., NDCG@5 $\approx$ 0.940, Recall@5 $=1.000$) with only $\sim$22M parameters in the embedding layer, achieving the best efficiency among ultra-efficient models ($<$25M parameters). In addition, we compare static vs. dynamic RAG combinations across Llama 3.1 and GPT-4o. Llama 3.1 with static RAG achieves the highest key-term coverage (67.2\%) at moderate latency, while GPT-4o with a dynamic selective retrieval policy attains the fastest responses (8.2s on average) with competitive coverage (58.7\%). We further present an engineering optimization of the DynamicRAG implementation, making embedding weights configurable, adjustable at runtime, and robust to invalid settings. ARM yields competitive accuracy, self-regularizing memory growth, and interpretable retention dynamics without retraining the generator\color{black} and provides practical trade-off between quality, latency and memory efficiency for production and research RAG system.

Country of Origin
🇹🇷 Turkey

Page Count
6 pages

Category
Computer Science:
Information Retrieval