Variational (Energy-Based) Spectral Learning: A Machine Learning Framework for Solving Partial Differential Equations
By: M. M. Hammad
Potential Business Impact:
Solves hard math problems using smart computer learning.
We introduce variational spectral learning (VSL), a machine learning framework for solving partial differential equations (PDEs) that operates directly in the coefficient space of spectral expansions. VSL offers a principled bridge between variational PDE theory, spectral discretization, and contemporary machine learning practice. The core idea is to recast a given PDE \[ \mathcal{L}u = f \quad \text{in} \quad Q=Ω\times(0,T), \] together with boundary and initial conditions, into differentiable space-time energies built from strong-form least-squares residuals and weak (Galerkin) formulations. The solution is represented as a finite spectral expansion \[ u_N(x,t)=\sum_{n=1}^{N} c_n\,φ_n(x,t), \] where $φ_n$ are tensor-product Chebyshev bases in space and time, with Dirichlet-satisfying spatial modes enforcing homogeneous boundary conditions analytically. This yields a compact linear parameterization in the coefficient vector $\mathbf{c}$, while all PDE complexity is absorbed into the variational energy. We show how to construct strong-form and weak-form space-time functionals, augment them with initial-condition and Tikhonov regularization terms, and minimize the resulting objective with gradient-based optimization. In practice, VSL is implemented in TensorFlow using automatic differentiation and Keras cosine-decay-with-restarts learning-rate schedules, enabling robust optimization of moderately sized coefficient vectors. Numerical experiments on benchmark elliptic and parabolic problems, including one- and two-dimensional Poisson, diffusion, and Burgers-type equations, demonstrate that VSL attains accuracy comparable to classical spectral collocation with Crank-Nicolson time stepping, while providing a differentiable objective suitable for modern optimization tooling.
Similar Papers
DeepVekua: Geometric-Spectral Representation Learning for Physics-Informed Fields
Machine Learning (CS)
Solves hard math problems with less data.
Separated-Variable Spectral Neural Networks: A Physics-Informed Learning Approach for High-Frequency PDEs
Machine Learning (CS)
Solves wiggly physics equations 1000 times better
Stable spectral neural operator for learning stiff PDE systems from limited data
Computational Physics
Learns hidden rules from few examples.