RadioDiff-Flux: Efficient Radio Map Construction via Generative Denoise Diffusion Model Trajectory Midpoint Reuse
By: Xiucheng Wang , Peilin Zheng , Honggang Jia and more
Potential Business Impact:
Makes wireless signals faster by reusing map parts.
Accurate radio map (RM) construction is essential to enabling environment-aware and adaptive wireless communication. However, in future 6G scenarios characterized by high-speed network entities and fast-changing environments, it is very challenging to meet real-time requirements. Although generative diffusion models (DMs) can achieve state-of-the-art accuracy with second-level delay, their iterative nature leads to prohibitive inference latency in delay-sensitive scenarios. In this paper, by uncovering a key structural property of diffusion processes: the latent midpoints remain highly consistent across semantically similar scenes, we propose RadioDiff-Flux, a novel two-stage latent diffusion framework that decouples static environmental modeling from dynamic refinement, enabling the reuse of precomputed midpoints to bypass redundant denoising. In particular, the first stage generates a coarse latent representation using only static scene features, which can be cached and shared across similar scenarios. The second stage adapts this representation to dynamic conditions and transmitter locations using a pre-trained model, thereby avoiding repeated early-stage computation. The proposed RadioDiff-Flux significantly reduces inference time while preserving fidelity. Experiment results show that RadioDiff-Flux can achieve up to 50 acceleration with less than 0.15% accuracy loss, demonstrating its practical utility for fast, scalable RM generation in future 6G networks.
Similar Papers
Denoising Diffusion Probabilistic Model for Radio Map Estimation in Generative Wireless Networks
Networking and Internet Architecture
Creates fast wireless maps from little data.
RadioFlow: Efficient Radio Map Construction Framework with Flow Matching
CV and Pattern Recognition
Makes wireless signals faster and uses less power.
RadioDiff-Inverse: Diffusion Enhanced Bayesian Inverse Estimation for ISAC Radio Map Construction
Artificial Intelligence
Maps wireless signals and buildings from weak data.