Score: 0

Soft Responsive Materials Enhance Humanoid Safety

Published: January 6, 2026 | arXiv ID: 2601.02857v1

By: Chunzheng Wang , Yiyuan Zhang , Annan Tang and more

Potential Business Impact:

Robots fall safely without breaking.

Business Areas:
Robotics Hardware, Science and Engineering, Software

Humanoid robots are envisioned as general-purpose platforms in human-centered environments, yet their deployment is limited by vulnerability to falls and the risks posed by rigid metal-plastic structures to people and surroundings. We introduce a soft-rigid co-design framework that leverages non-Newtonian fluid-based soft responsive materials to enhance humanoid safety. The material remains compliant during normal interaction but rapidly stiffens under impact, absorbing and dissipating fall-induced forces. Physics-based simulations guide protector placement and thickness and enable learning of active fall policies. Applied to a 42 kg life-size humanoid, the protector markedly reduces peak impact and allows repeated falls without hardware damage, including drops from 3 m and tumbles down long staircases. Across diverse scenarios, the approach improves robot robustness and environmental safety. By uniting responsive materials, structural co-design, and learning-based control, this work advances interact-safe, industry-ready humanoid robots.

Country of Origin
πŸ‡ΈπŸ‡¬ Singapore

Page Count
40 pages

Category
Computer Science:
Robotics