Ratio-Variance Regularized Policy Optimization for Efficient LLM Fine-tuning
By: Yu Luo , Shuo Han , Yihan Hu and more
Potential Business Impact:
Helps AI learn better and faster from mistakes.
On-policy reinforcement learning (RL), particularly Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO), has become the dominant paradigm for fine-tuning large language models (LLMs). While policy ratio clipping stabilizes training, this heuristic hard constraint incurs a fundamental cost: it indiscriminately truncates gradients from high-return yet high-divergence actions, suppressing rare but highly informative "eureka moments" in complex reasoning. Moreover, once data becomes slightly stale, hard clipping renders it unusable, leading to severe sample inefficiency. In this work, we revisit the trust-region objective in policy optimization and show that explicitly constraining the \emph{variance (second central moment) of the policy ratio} provides a principled and smooth relaxation of hard clipping. This distributional constraint stabilizes policy updates while preserving gradient signals from valuable trajectories. Building on this insight, we propose $R^2VPO$ (Ratio-Variance Regularized Policy Optimization), a novel primal-dual framework that supports stable on-policy learning and enables principled off-policy data reuse by dynamically reweighting stale samples rather than discarding them. We extensively evaluate $R^2VPO$ on fine-tuning state-of-the-art LLMs, including DeepSeek-Distill-Qwen-1.5B and the openPangu-Embedded series (1B and 7B), across challenging mathematical reasoning benchmarks. Experimental results show that $R^2VPO$ consistently achieves superior asymptotic performance, with average relative gains of up to 17% over strong clipping-based baselines, while requiring approximately 50% fewer rollouts to reach convergence. These findings establish ratio-variance control as a promising direction for improving both stability and data efficiency in RL-based LLM alignment.
Similar Papers
DVPO: Distributional Value Modeling-based Policy Optimization for LLM Post-Training
Machine Learning (CS)
Teaches AI to learn better from messy information.
GVPO: Group Variance Policy Optimization for Large Language Model Post-Training
Artificial Intelligence
Makes AI learn better and more reliably.
Non-Asymptotic Global Convergence of PPO-Clip
Optimization and Control
Makes AI learn better and faster.