Score: 0

Interleaved Tool-Call Reasoning for Protein Function Understanding

Published: January 7, 2026 | arXiv ID: 2601.03604v1

By: Chuanliu Fan , Zicheng Ma , Huanran Meng and more

Potential Business Impact:

Helps scientists understand how proteins work better.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Recent advances in large language models (LLMs) have highlighted the effectiveness of chain-of-thought reasoning in symbolic domains such as mathematics and programming. However, our study shows that directly transferring such text-based reasoning paradigms to protein function understanding is ineffective: reinforcement learning mainly amplifies superficial keyword patterns while failing to introduce new biological knowledge, resulting in limited generalization. We argue that protein function prediction is a knowledge-intensive scientific task that fundamentally relies on external biological priors and computational tools rather than purely internal reasoning. To address this gap, we propose PFUA, a tool-augmented protein reasoning agent that unifies problem decomposition, tool invocation, and grounded answer generation. Instead of relying on long unconstrained reasoning traces, PFUA integrates domain-specific tools to produce verifiable intermediate evidence. Experiments on four benchmarks demonstrate that PFUA consistently outperforms text-only reasoning models with an average performance improvement of 103%.

Page Count
16 pages

Category
Computer Science:
Artificial Intelligence