Score: 0

From Implicit to Explicit: Token-Efficient Logical Supervision for Mathematical Reasoning in LLMs

Published: January 7, 2026 | arXiv ID: 2601.03682v1

By: Shaojie Wang, Liang Zhang

Potential Business Impact:

Teaches computers to think step-by-step for math.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Recent studies reveal that large language models (LLMs) exhibit limited logical reasoning abilities in mathematical problem-solving, instead often relying on pattern-matching and memorization. We systematically analyze this limitation, focusing on logical relationship understanding, which is a core capability underlying genuine logical reasoning, and reveal that errors related to this capability account for over 90\% of incorrect predictions, with Chain-of-Thought Supervised Fine-Tuning (CoT-SFT) failing to substantially reduce these errors. To address this bottleneck, we propose First-Step Logical Reasoning (FSLR), a lightweight training framework targeting logical relationship understanding. Our key insight is that the first planning step-identifying which variables to use and which operation to apply-encourages the model to derive logical relationships directly from the problem statement. By training models on this isolated step, FSLR provides explicit supervision for logical relationship understanding, unlike CoT-SFT which implicitly embeds such relationships within complete solution trajectories. Extensive experiments across multiple models and datasets demonstrate that FSLR consistently outperforms CoT-SFT under both in-distribution and out-of-distribution settings, with average improvements of 3.2\% and 4.6\%, respectively. Moreover, FSLR achieves 4-6x faster training and reduces training token consumption by over 80\%.

Page Count
13 pages

Category
Computer Science:
Computation and Language