Quantum vs. Classical Machine Learning: A Benchmark Study for Financial Prediction
By: Rehan Ahmad , Muhammad Kashif , Nouhaila Innan and more
Potential Business Impact:
Quantum computers can predict stock prices better.
In this paper, we present a reproducible benchmarking framework that systematically compares QML models with architecture-matched classical counterparts across three financial tasks: (i) directional return prediction on U.S. and Turkish equities, (ii) live-trading simulation with Quantum LSTMs versus classical LSTMs on the S\&P 500, and (iii) realized volatility forecasting using Quantum Support Vector Regression. By standardizing data splits, features, and evaluation metrics, our study provides a fair assessment of when current-generation QML models can match or exceed classical methods. Our results reveal that quantum approaches show performance gains when data structure and circuit design are well aligned. In directional classification, hybrid quantum neural networks surpass the parameter-matched ANN by \textbf{+3.8 AUC} and \textbf{+3.4 accuracy points} on \texttt{AAPL} stock and by \textbf{+4.9 AUC} and \textbf{+3.6 accuracy points} on Turkish stock \texttt{KCHOL}. In live trading, the QLSTM achieves higher risk-adjusted returns in \textbf{two of four} S\&P~500 regimes. For volatility forecasting, an angle-encoded QSVR attains the \textbf{lowest QLIKE} on \texttt{KCHOL} and remains within $\sim$0.02-0.04 QLIKE of the best classical kernels on \texttt{S\&P~500} and \texttt{AAPL}. Our benchmarking framework clearly identifies the scenarios where current QML architectures offer tangible improvements and where established classical methods continue to dominate.
Similar Papers
Quantum and Classical Machine Learning in Decentralized Finance: Comparative Evidence from Multi-Asset Backtesting of Automated Market Makers
Statistical Finance
Quantum computers help make more money trading crypto.
Contextual Quantum Neural Networks for Stock Price Prediction
Machine Learning (CS)
Predicts stock prices better using quantum computers.
Hybrid Quantum-Classical Neural Networks for Few-Shot Credit Risk Assessment
Machine Learning (CS)
Helps banks decide who to lend money to.