Score: 3

ASVspoof 5: Evaluation of Spoofing, Deepfake, and Adversarial Attack Detection Using Crowdsourced Speech

Published: January 7, 2026 | arXiv ID: 2601.03944v1

By: Xin Wang , Héctor Delgado , Nicholas Evans and more

BigTech Affiliations: Microsoft

Potential Business Impact:

Finds fake voices in recordings.

Business Areas:
Speech Recognition Data and Analytics, Software

ASVspoof 5 is the fifth edition in a series of challenges which promote the study of speech spoofing and deepfake detection solutions. A significant change from previous challenge editions is a new crowdsourced database collected from a substantially greater number of speakers under diverse recording conditions, and a mix of cutting-edge and legacy generative speech technology. With the new database described elsewhere, we provide in this paper an overview of the ASVspoof 5 challenge results for the submissions of 53 participating teams. While many solutions perform well, performance degrades under adversarial attacks and the application of neural encoding/compression schemes. Together with a review of post-challenge results, we also report a study of calibration in addition to other principal challenges and outline a road-map for the future of ASVspoof.

Country of Origin
🇭🇰 🇺🇸 United States, Hong Kong

Repos / Data Links

Page Count
17 pages

Category
Electrical Engineering and Systems Science:
Signal Processing