Score: 0

Agent Drift: Quantifying Behavioral Degradation in Multi-Agent LLM Systems Over Extended Interactions

Published: January 7, 2026 | arXiv ID: 2601.04170v1

By: Abhishek Rath

Potential Business Impact:

Keeps AI helpers working right for a long time.

Business Areas:
Artificial Intelligence Artificial Intelligence, Data and Analytics, Science and Engineering, Software

Multi-agent Large Language Model (LLM) systems have emerged as powerful architectures for complex task decomposition and collaborative problem-solving. However, their long-term behavioral stability remains largely unexamined. This study introduces the concept of agent drift, defined as the progressive degradation of agent behavior, decision quality, and inter-agent coherence over extended interaction sequences. We present a comprehensive theoretical framework for understanding drift phenomena, proposing three distinct manifestations: semantic drift (progressive deviation from original intent), coordination drift (breakdown in multi-agent consensus mechanisms), and behavioral drift (emergence of unintended strategies). We introduce the Agent Stability Index (ASI), a novel composite metric framework for quantifying drift across twelve dimensions, including response consistency, tool usage patterns, reasoning pathway stability, and inter-agent agreement rates. Through simulation-based analysis and theoretical modeling, we demonstrate how unchecked agent drift can lead to substantial reductions in task completion accuracy and increased human intervention requirements. We propose three mitigation strategies: episodic memory consolidation, drift-aware routing protocols, and adaptive behavioral anchoring. Theoretical analysis suggests these approaches can significantly reduce drift-related errors while maintaining system throughput. This work establishes a foundational methodology for monitoring, measuring, and mitigating agent drift in production agentic AI systems, with direct implications for enterprise deployment reliability and AI safety research.

Page Count
12 pages

Category
Computer Science:
Artificial Intelligence