Score: 1

Disco-RAG: Discourse-Aware Retrieval-Augmented Generation

Published: January 7, 2026 | arXiv ID: 2601.04377v1

By: Dongqi Liu , Hang Ding , Qiming Feng and more

Potential Business Impact:

Helps AI understand and use information better.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Retrieval-Augmented Generation (RAG) has emerged as an important means of enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages in a flat and unstructured way, which prevents the model from capturing structural cues and constrains its ability to synthesize knowledge from dispersed evidence across documents. To overcome these limitations, we propose Disco-RAG, a discourse-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk discourse trees to capture local hierarchies and builds inter-chunk rhetorical graphs to model cross-passage coherence. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Disco-RAG achieves state-of-the-art results on the benchmarks without fine-tuning. These findings underscore the important role of discourse structure in advancing RAG systems.

Country of Origin
🇩🇪 Germany

Page Count
32 pages

Category
Computer Science:
Computation and Language