Score: 0

Categorical Belief Propagation: Sheaf-Theoretic Inference via Descent and Holonomy

Published: January 8, 2026 | arXiv ID: 2601.04456v1

By: Enrique ter Horst, Sridhar Mahadevan, Juan Diego Zambrano

Potential Business Impact:

Makes computers solve hard problems faster and more reliably.

Business Areas:
Semantic Search Internet Services

We develop a categorical foundation for belief propagation on factor graphs. We construct the free hypergraph category \(\Syn_Σ\) on a typed signature and prove its universal property, yielding compositional semantics via a unique functor to the matrix category \(\cat{Mat}_R\). Message-passing is formulated using a Grothendieck fibration \(\int\Msg \to \cat{FG}_Σ\) over polarized factor graphs, with schedule-indexed endomorphisms defining BP updates. We characterize exact inference as effective descent: local beliefs form a descent datum when compatibility conditions hold on overlaps. This framework unifies tree exactness, junction tree algorithms, and loopy BP failures under sheaf-theoretic obstructions. We introduce HATCC (Holonomy-Aware Tree Compilation), an algorithm that detects descent obstructions via holonomy computation on the factor nerve, compiles non-trivial holonomy into mode variables, and reduces to tree BP on an augmented graph. Complexity is \(O(n^2 d_{\max} + c \cdot k_{\max} \cdot δ_{\max}^3 + n \cdot δ_{\max}^2)\) for \(n\) factors and \(c\) fundamental cycles. Experimental results demonstrate exact inference with significant speedup over junction trees on grid MRFs and random graphs, along with UNSAT detection on satisfiability instances.

Page Count
43 pages

Category
Computer Science:
Artificial Intelligence