Scalable Floating-Point Satisfiability via Staged Optimization
By: Yuanzhuo Zhang, Zhoulai Fu, Binoy Ravindran
Potential Business Impact:
Solves hard math problems faster and more accurately.
This work introduces StageSAT, a new approach to solving floating-point satisfiability that bridges SMT solving with numerical optimization. StageSAT reframes a floating-point formula as a series of optimization problems in three stages of increasing precision. It begins with a fast, projection-aided descent objective to guide the search toward a feasible region, proceeding to bit-level accuracy with ULP$^2$ optimization and a final $n$-ULP lattice refinement. By construction, the final stage uses a representing function that is zero if and only if a candidate satisfies all constraints. Thus, when optimization drives the objective to zero, the resulting assignment is a valid solution, providing a built-in guarantee of soundness. To improve search, StageSAT introduces a partial monotone descent property on linear constraints via orthogonal projection, preventing the optimizer from stalling on flat or misleading landscapes. Critically, this solver requires no heavy bit-level reasoning or specialized abstractions; it treats complex arithmetic as a black-box, using runtime evaluations to navigate the input space. We implement StageSAT and evaluate it on extensive benchmarks, including SMT-COMP'25 suites and difficult cases from prior work. StageSAT proved more scalable and accurate than state-of-the-art optimization-based alternatives. It solved strictly more formulas than any competing solver under the same time budget, finding most satisfiable instances without producing spurious models. This amounts to 99.4% recall on satisfiable cases with 0% false SAT, exceeding the reliability of prior optimization-based solvers. StageSAT also delivered significant speedups (often 5--10$\times$) over traditional bit-precise SMT and numeric solvers. These results demonstrate that staged optimization significantly improves performance and correctness of floating-point satisfiability solving.
Similar Papers
parSAT: Parallel Solving of Floating-Point Satisfiability
Logic in Computer Science
Makes computers check math problems faster.
TurboSAT: Gradient-Guided Boolean Satisfiability Accelerated on GPU-CPU Hybrid System
Logic in Computer Science
Solves hard logic puzzles 200 times faster.
Compact SAT Encoding for Power Peak Minimization
Logic in Computer Science
Makes factory robots use less electricity.