Score: 0

Neurosymbolic Retrievers for Retrieval-augmented Generation

Published: January 8, 2026 | arXiv ID: 2601.04568v1

By: Yash Saxena, Manas Gaur

Potential Business Impact:

Makes AI answers clearer and more trustworthy.

Business Areas:
Semantic Search Internet Services

Retrieval Augmented Generation (RAG) has made significant strides in overcoming key limitations of large language models, such as hallucination, lack of contextual grounding, and issues with transparency. However, traditional RAG systems consist of three interconnected neural components - the retriever, re-ranker, and generator - whose internal reasoning processes remain opaque. This lack of transparency complicates interpretability, hinders debugging efforts, and erodes trust, especially in high-stakes domains where clear decision-making is essential. To address these challenges, we introduce the concept of Neurosymbolic RAG, which integrates symbolic reasoning using a knowledge graph with neural retrieval techniques. This new framework aims to answer two primary questions: (a) Can retrievers provide a clear and interpretable basis for document selection? (b) Can symbolic knowledge enhance the clarity of the retrieval process? We propose three methods to improve this integration. First is MAR (Knowledge Modulation Aligned Retrieval) that employs modulation networks to refine query embeddings using interpretable symbolic features, thereby making document matching more explicit. Second, KG-Path RAG enhances queries by traversing knowledge graphs to improve overall retrieval quality and interpretability. Lastly, Process Knowledge-infused RAG utilizes domain-specific tools to reorder retrieved content based on validated workflows. Preliminary results from mental health risk assessment tasks indicate that this neurosymbolic approach enhances both transparency and overall performance

Country of Origin
πŸ‡ΊπŸ‡Έ United States

Page Count
8 pages

Category
Computer Science:
Artificial Intelligence