Score: 0

FibreCastML: An Open Web Platform for Predicting Electrospun Nanofibre Diameter Distributions

Published: January 8, 2026 | arXiv ID: 2601.04873v1

By: Elisa Roldan , Kirstie Andrews , Stephen M. Richardson and more

Potential Business Impact:

Helps make better medical bandages by predicting fiber size.

Business Areas:
Nanotechnology Science and Engineering

Electrospinning is a scalable technique for producing fibrous scaffolds with tunable micro- and nanoscale architectures for applications in tissue engineering, drug delivery, and wound care. While machine learning (ML) has been used to support electrospinning process optimisation, most existing approaches predict only mean fibre diameters, neglecting the full diameter distribution that governs scaffold performance. This work presents FibreCastML, an open, distribution-aware ML framework that predicts complete fibre diameter spectra from routinely reported electrospinning parameters and provides interpretable insights into process structure relationships. A meta-dataset comprising 68538 individual fibre diameter measurements extracted from 1778 studies across 16 biomedical polymers was curated. Six standard processing parameters, namely solution concentration, applied voltage, flow rate, tip to collector distance, needle diameter, and collector rotation speed, were used to train seven ML models using nested cross validation with leave one study out external folds. Model interpretability was achieved using variable importance analysis, SHapley Additive exPlanations, correlation matrices, and three dimensional parameter maps. Non linear models consistently outperformed linear baselines, achieving coefficients of determination above 0.91 for several widely used polymers. Solution concentration emerged as the dominant global driver of fibre diameter distributions. Experimental validation across different electrospinning systems demonstrated close agreement between predicted and measured distributions. FibreCastML enables more reproducible and data driven optimisation of electrospun scaffold architectures.

Country of Origin
🇬🇧 United Kingdom

Page Count
31 pages

Category
Computer Science:
Machine Learning (CS)