Score: 0

DVD: A Robust Method for Detecting Variant Contamination in Large Language Model Evaluation

Published: January 8, 2026 | arXiv ID: 2601.04895v1

By: Renzhao Liang , Jingru Chen , Bo Jia and more

Potential Business Impact:

Finds fake answers in AI tests.

Business Areas:
A/B Testing Data and Analytics

Evaluating large language models (LLMs) is increasingly confounded by \emph{variant contamination}: the training corpus contains semantically equivalent yet lexically or syntactically altered versions of test items. Unlike verbatim leakage, these paraphrased or structurally transformed variants evade existing detectors based on sampling consistency or perplexity, thereby inflating benchmark scores via memorization rather than genuine reasoning. We formalize this problem and introduce \textbf{DVD} (\textbf{D}etection via \textbf{V}ariance of generation \textbf{D}istribution), a single-sample detector that models the local output distribution induced by temperature sampling. Our key insight is that contaminated items trigger alternation between a \emph{memory-adherence} state and a \emph{perturbation-drift} state, yielding abnormally high variance in the synthetic difficulty of low-probability tokens; uncontaminated items remain in drift with comparatively smooth variance. We construct the first benchmark for variant contamination across two domains Omni-MATH and SuperGPQA by generating and filtering semantically equivalent variants, and simulate contamination via fine-tuning models of different scales and architectures (Qwen2.5 and Llama3.1). Across datasets and models, \textbf{DVD} consistently outperforms perplexity-based, Min-$k$\%++, edit-distance (CDD), and embedding-similarity baselines, while exhibiting strong robustness to hyperparameters. Our results establish variance of the generation distribution as a principled and practical fingerprint for detecting variant contamination in LLM evaluation.

Country of Origin
πŸ‡¨πŸ‡³ China

Page Count
16 pages

Category
Computer Science:
Artificial Intelligence