Score: 0

Rotation-Robust Regression with Convolutional Model Trees

Published: January 8, 2026 | arXiv ID: 2601.04899v1

By: Hongyi Li, William Ward Armstrong, Jun Xu

Potential Business Impact:

Teaches computers to see pictures from any angle.

Business Areas:
Image Recognition Data and Analytics, Software

We study rotation-robust learning for image inputs using Convolutional Model Trees (CMTs) [1], whose split and leaf coefficients can be structured on the image grid and transformed geometrically at deployment time. In a controlled MNIST setting with a rotation-invariant regression target, we introduce three geometry-aware inductive biases for split directions -- convolutional smoothing, a tilt dominance constraint, and importance-based pruning -- and quantify their impact on robustness under in-plane rotations. We further evaluate a deployment-time orientation search that selects a discrete rotation maximizing a forest-level confidence proxy without updating model parameters. Orientation search improves robustness under severe rotations but can be harmful near the canonical orientation when confidence is misaligned with correctness. Finally, we observe consistent trends on MNIST digit recognition implemented as one-vs-rest regression, highlighting both the promise and limitations of confidence-based orientation selection for model-tree ensembles.

Page Count
7 pages

Category
Computer Science:
CV and Pattern Recognition