Score: 0

Parallel Quadratic Selected Inversion in Quantum Transport Simulation

Published: January 8, 2026 | arXiv ID: 2601.04904v1

By: Vincent Maillou , Matthias Bollhofer , Olaf Schenk and more

Potential Business Impact:

Makes computer chips work faster and bigger.

Business Areas:
Quantum Computing Science and Engineering

Driven by Moore's Law, the dimensions of transistors have been pushed down to the nanometer scale. Advanced quantum transport (QT) solvers are required to accurately simulate such nano-devices. The non-equilibrium Green's function (NEGF) formalism lends itself optimally to these tasks, but it is computationally very intensive, involving the selected inversion (SI) of matrices and the selected solution of quadratic matrix (SQ) equations. Existing algorithms to tackle these numerical problems are ideally suited to GPU acceleration, e.g., the so-called recursive Green's function (RGF) technique, but they are typically sequential, require block-tridiagonal (BT) matrices as inputs, and their implementation has been so far restricted to shared memory parallelism, thus limiting the achievable device sizes. To address these shortcomings, we introduce distributed methods that build on RGF and enable parallel selected inversion and selected solution of the quadratic matrix equation. We further extend them to handle BT matrices with arrowhead, which allows for the investigation of multi-terminal transistor structures. We evaluate the performance of our approach on a real dataset from the QT simulation of a nano-ribbon transistor and compare it with the sparse direct package PARDISO. When scaling to 16 GPUs, our fused SI and SQ solver is 5.2x faster than the SI module of PARDISO applied to a device 16x shorter. These results highlight the potential of our method to accelerate NEGF-based nano-device simulations.

Page Count
12 pages

Category
Computer Science:
Distributed, Parallel, and Cluster Computing