Score: 0

Inapproximability of Counting Permutation Patterns

Published: January 8, 2026 | arXiv ID: 2601.05166v1

By: Michal Opler

Potential Business Impact:

Makes counting patterns in data much faster.

Business Areas:
A/B Testing Data and Analytics

Detecting and counting copies of permutation patterns are fundamental algorithmic problems, with applications in the analysis of rankings, nonparametric statistics, and property testing tasks such as independence and quasirandomness testing. From an algorithmic perspective, there is a sharp difference in complexity between detecting and counting the copies of a given length-$k$ pattern in a length-$n$ permutation. The former admits a $2^{\mathcal{O}(k^2)} \cdot n$ time algorithm (Guillemot and Marx, 2014) while the latter cannot be solved in time $f(k)\cdot n^{o(k/\log k)}$ unless the Exponential Time Hypothesis (ETH) fails (Berendsohn, Kozma, and Marx, 2021). In fact already for patterns of length 4, exact counting is unlikely to admit near-linear time algorithms under standard fine-grained complexity assumptions (Dudek and Gawrychowski, 2020). Recently, Ben-Eliezer, Mitrović and Sristava (2026) showed that for patterns of length up to 5, a $(1+\varepsilon)$-approximation of the pattern count can be computed in near-linear time, yielding a separation between exact and approximate counting for small patterns, and conjectured that approximate counting is asymptotically easier than exact counting in general. We strongly refute their conjecture by showing that, under ETH, no algorithm running in time $f(k)\cdot n^{o(k/\log k)}$ can approximate the number of copies of a length-$k$ pattern within a multiplicative factor $n^{(1/2-\varepsilon)k}$. The lower bound on runtime matches the conditional lower bound for exact pattern counting, and the obtained bound on the multiplicative error factor is essentially tight, as an $n^{k/2}$-approximation can be computed in $2^{\mathcal{O}(k^2)}\cdot n$ time using an algorithm for pattern detection.

Page Count
13 pages

Category
Computer Science:
Data Structures and Algorithms