Score: 0

Sketch&Patch++: Efficient Structure-Aware 3D Gaussian Representation

Published: January 8, 2026 | arXiv ID: 2601.05394v1

By: Yuang Shi , Simone Gasparini , Géraldine Morin and more

Potential Business Impact:

Makes 3D pictures load faster and look better.

Business Areas:
Image Recognition Data and Analytics, Software

We observe that Gaussians exhibit distinct roles and characteristics analogous to traditional artistic techniques -- like how artists first sketch outlines before filling in broader areas with color, some Gaussians capture high-frequency features such as edges and contours, while others represent broader, smoother regions analogous to brush strokes that add volume and depth. Based on this observation, we propose a hybrid representation that categorizes Gaussians into (i) Sketch Gaussians, which represent high-frequency, boundary-defining features, and (ii) Patch Gaussians, which cover low-frequency, smooth regions. This semantic separation naturally enables layered progressive streaming, where the compact Sketch Gaussians establish the structural skeleton before Patch Gaussians incrementally refine volumetric detail. In this work, we extend our previous method to arbitrary 3D scenes by proposing a novel hierarchical adaptive categorization framework that operates directly on the 3DGS representation. Our approach employs multi-criteria density-based clustering, combined with adaptive quality-driven refinement. This method eliminates dependency on external 3D line primitives while ensuring optimal parametric encoding effectiveness. Our comprehensive evaluation across diverse scenes, including both man-made and natural environments, demonstrates that our method achieves up to 1.74 dB improvement in PSNR, 6.7% in SSIM, and 41.4% in LPIPS at equivalent model sizes compared to uniform pruning baselines. For indoor scenes, our method can maintain visual quality with only 0.5\% of the original model size. This structure-aware representation enables efficient storage, adaptive streaming, and rendering of high-fidelity 3D content across bandwidth-constrained networks and resource-limited devices.

Country of Origin
🇸🇬 Singapore

Page Count
26 pages

Category
Computer Science:
CV and Pattern Recognition