Score: 0

Autoregressive Ranking: Bridging the Gap Between Dual and Cross Encoders

Published: January 9, 2026 | arXiv ID: 2601.05588v1

By: Benjamin Rozonoyer , Chong You , Michael Boratko and more

Potential Business Impact:

Makes computers find information better and faster.

Business Areas:
Semantic Search Internet Services

Dual and cross encoders have long been mainstays of information retrieval (IR), but are being challenged by the emergent capabilities of LLMs. An LLM-based approach we term pointwise generative ranking - generating tokens the length of a single docID as opposed to a list in order to enable ranking via beam search - combines efficiency and expressivity benefits while leveraging the in-context capabilities of Causal Transformers. Although there is ample evidence to suggest that pretrained LLMs are well-suited for ranking, we find that the vast majority of LLM-based approaches rely on next-token prediction, a loss function which is fundamentally rank-agnostic (and especially so with pointwise supervision). In this paper, we first prove that the expressivity of pointwise generative ranking with multi-token docIDs is superior to that of dual encoders. We then propose SToICaL - a Simple Token-Item Calibrated Loss - which can incorporate rank-aware supervision at both the item and token levels within the pointwise setup. We run a suite of experiments on ranking tasks derived from WordNet (Fellbaum, 1998) and ESCI (Reddy et al., arXiv:2206.06588). Two variants of SToICaL successfully suppress the probability of invalid docID generations and improve on common ranking metrics beyond top-1 retrieval.

Page Count
22 pages

Category
Computer Science:
Information Retrieval