A Three--Dimensional Efficient Surface for Portfolio Optimization
By: Yimeng Qiu
Potential Business Impact:
Helps investors pick safer stocks by watching how they're connected.
The classical mean-variance framework characterizes portfolio risk solely through return variance and the covariance matrix, implicitly assuming that all relevant sources of risk are captured by second moments. In modern financial markets, however, shocks often propagate through complex networks of interconnections, giving rise to systemic and spillover risks that variance alone does not reflect. This paper develops a unified portfolio optimization framework that incorporates connectedness risk alongside expected return and variance. Using a quadratic measure of network spillovers derived from a connectedness matrix, we formulate a three-objective optimization problem and characterize the resulting three-dimensional efficient surface. We establish existence, uniqueness, and continuity of optimal portfolios under mild regularity conditions and derive closed-form solutions when short-selling is allowed. The trade-off between variance and connectedness is shown to be strictly monotone except in degenerate cases, yielding a well-defined risk-risk frontier. Under simultaneous diagonalizability of the covariance and connectedness matrices, we prove a three-fund separation theorem: all efficient portfolios can be expressed as affine combinations of a minimum-variance portfolio, a minimum-connectedness portfolio, and the tangency portfolio. The framework clarifies how network-based risk alters classical diversification results and provides a transparent theoretical foundation for incorporating systemic connectedness into portfolio choice.
Similar Papers
Hierarchical Minimum Variance Portfolios: A Theoretical and Algorithmic Approach
Portfolio Management
Makes investing easier and faster for big groups.
Robust and Sparse Portfolio Selection: Quantitative Insights and Efficient Algorithms
Portfolio Management
Helps investors pick fewer, better stocks.
Clustered Network Connectedness: A New Measurement Framework with Application to Global Equity Markets
Econometrics
Shows how money moves between groups of countries.