Score: 0

Teach Diffusion Language Models to Learn from Their Own Mistakes

Published: January 10, 2026 | arXiv ID: 2601.06428v1

By: Liming Liu , Binxuan Huang , Xin Liu and more

Masked Diffusion Language Models (DLMs) achieve significant speed by generating multiple tokens in parallel. However, this parallel sampling approach, especially when using fewer inference steps, will introduce strong dependency errors and cause quality to deteriorate rapidly as the generation step size grows. As a result, reliable self-correction becomes essential for maintaining high-quality multi-token generation. To address this, we propose Decoupled Self-Correction (DSC), a novel two-stage methodology. DSC first fully optimizes the DLM's generative ability before freezing the model and training a specialized correction head. This decoupling preserves the model's peak SFT performance and ensures the generated errors used for correction head training are of higher quality. Additionally, we introduce Future-Context Augmentation (FCA) to maximize the correction head's accuracy. FCA generalizes the error training distribution by augmenting samples with ground-truth tokens, effectively training the head to utilize a richer, future-looking context. This mechanism is used for reliably detecting the subtle errors of the high-fidelity base model. Our DSC framework enables the model, at inference time, to jointly generate and revise tokens, thereby correcting errors introduced by multi-token generation and mitigating error accumulation across steps. Experiments on mathematical reasoning and code generation benchmarks demonstrate that our approach substantially reduces the quality degradation associated with larger generation steps, allowing DLMs to achieve both high generation speed and strong output fidelity.

Category
Computer Science:
Machine Learning (CS)