Score: 0

VIPER Strike: Defeating Visual Reasoning CAPTCHAs via Structured Vision-Language Inference

Published: January 10, 2026 | arXiv ID: 2601.06461v1

By: Minfeng Qi , Dongyang He , Qin Wang and more

Potential Business Impact:

Cracks picture puzzles that stop bots.

Business Areas:
Visual Search Internet Services

Visual Reasoning CAPTCHAs (VRCs) combine visual scenes with natural-language queries that demand compositional inference over objects, attributes, and spatial relations. They are increasingly deployed as a primary defense against automated bots. Existing solvers fall into two paradigms: vision-centric, which rely on template-specific detectors but fail on novel layouts, and reasoning-centric, which leverage LLMs but struggle with fine-grained visual perception. Both lack the generality needed to handle heterogeneous VRC deployments. We present ViPer, a unified attack framework that integrates structured multi-object visual perception with adaptive LLM-based reasoning. ViPer parses visual layouts, grounds attributes to question semantics, and infers target coordinates within a modular pipeline. Evaluated on six major VRC providers (VTT, Geetest, NetEase, Dingxiang, Shumei, Xiaodun), ViPer achieves up to 93.2% success, approaching human-level performance across multiple benchmarks. Compared to prior solvers, GraphNet (83.2%), Oedipus (65.8%), and the Holistic approach (89.5%), ViPer consistently outperforms all baselines. The framework further maintains robustness across alternative LLM backbones (GPT, Grok, DeepSeek, Kimi), sustaining accuracy above 90%. To anticipate defense, we further introduce Template-Space Randomization (TSR), a lightweight strategy that perturbs linguistic templates without altering task semantics. TSR measurably reduces solver (i.e., attacker) performance. Our proposed design suggests directions for human-solvable but machine-resistant CAPTCHAs.

Page Count
20 pages

Category
Computer Science:
Cryptography and Security