Score: 1

SecureDyn-FL: A Robust Privacy-Preserving Federated Learning Framework for Intrusion Detection in IoT Networks

Published: January 10, 2026 | arXiv ID: 2601.06466v1

By: Imtiaz Ali Soomro , Hamood Ur Rehman , S. Jawad Hussain ID and more

Potential Business Impact:

Protects smart devices from hackers without spying.

Business Areas:
Intrusion Detection Information Technology, Privacy and Security

The rapid proliferation of Internet of Things (IoT) devices across domains such as smart homes, industrial control systems, and healthcare networks has significantly expanded the attack surface for cyber threats, including botnet-driven distributed denial-of-service (DDoS), malware injection, and data exfiltration. Conventional intrusion detec- tion systems (IDS) face critical challenges like privacy, scala- bility, and robustness when applied in such heterogeneous IoT environments. To address these issues, we propose SecureDyn- FL, a comprehensive and robust privacy-preserving federated learning (FL) framework tailored for intrusion detection in IoT networks. SecureDyn-FL is designed to simultaneously address multiple security dimensions in FL-based IDS: (1) poisoning detection through dynamic temporal gradient auditing, (2) privacy protection against inference and eavesdrop- ping attacks through secure aggregation, and (3) adaptation to heterogeneous non-IID data via personalized learning. The framework introduces three core contributions: (i) a dynamic temporal gradient auditing mechanism that leverages Gaussian mixture models (GMMs) and Mahalanobis distance (MD) to detect stealthy and adaptive poisoning attacks, (ii) an optimized privacy-preserving aggregation scheme based on transformed additive ElGamal encryption with adaptive pruning and quantization for secure and efficient communication, and (iii) a dual-objective personalized learning strategy that improves model adaptation under non-IID data using logit-adjusted loss. Extensive experiments on the N-BaIoT dataset under both IID and non-IID settings, including scenarios with up to 50% adversarial clients, demonstrate that SecureDyn- FL consistently outperforms state-of-the-art FL-based IDS defenses.

Country of Origin
🇨🇳 China

Page Count
24 pages

Category
Computer Science:
Cryptography and Security