Score: 0

Some New Results on Sequence Reconstruction Problem for Deletion Channels

Published: January 10, 2026 | arXiv ID: 2601.06503v1

By: Xiang Wang , Weijun Fang , Han Li and more

Levenshtein first introduced the sequence reconstruction problem in $2001$. In the realm of combinatorics, the sequence reconstruction problem is equivalent to determining the value of $N(n,d,t)$, which represents the maximum size of the intersection of two metric balls of radius $t$, given that the distance between their centers is at least $d$ and the sequence length is $n$. In this paper, We present a lower bound on $N(n,3,t)$ for $n\geq 13$ and $t \geq 4$. For $t=4$, we prove that this lower bound is tight. This settles an open question posed by Pham, Goyal, and Kiah, confirming that $N(n,3,4)=20n-166$ for all $n \geq 13$.

Category
Computer Science:
Information Theory