Score: 0

MedRAGChecker: Claim-Level Verification for Biomedical Retrieval-Augmented Generation

Published: January 10, 2026 | arXiv ID: 2601.06519v1

By: Yuelyu Ji , Min Gu Kwak , Hang Zhang and more

Biomedical retrieval-augmented generation (RAG) can ground LLM answers in medical literature, yet long-form outputs often contain isolated unsupported or contradictory claims with safety implications. We introduce MedRAGChecker, a claim-level verification and diagnostic framework for biomedical RAG. Given a question, retrieved evidence, and a generated answer, MedRAGChecker decomposes the answer into atomic claims and estimates claim support by combining evidence-grounded natural language inference (NLI) with biomedical knowledge-graph (KG) consistency signals. Aggregating claim decisions yields answer-level diagnostics that help disentangle retrieval and generation failures, including faithfulness, under-evidence, contradiction, and safety-critical error rates. To enable scalable evaluation, we distill the pipeline into compact biomedical models and use an ensemble verifier with class-specific reliability weighting. Experiments on four biomedical QA benchmarks show that MedRAGChecker reliably flags unsupported and contradicted claims and reveals distinct risk profiles across generators, particularly on safety-critical biomedical relations.

Category
Computer Science:
Computation and Language