Cross-Modal Computational Model of Brain-Heart Interactions via HRV and EEG Feature
By: Malavika Pradeep , Akshay Sasi , Nusaibah Farrukh and more
The electroencephalogram (EEG) has been the gold standard for quantifying mental workload; however, due to its complexity and non-portability, it can be constraining. ECG signals, which are feasible on wearable equipment pieces such as headbands, present a promising method for cognitive state monitoring. This research explores whether electrocardiogram (ECG) signals are able to indicate mental workload consistently and act as surrogates for EEG-based cognitive indicators. This study investigates whether ECG-derived features can serve as surrogate indicators of cognitive load, a concept traditionally quantified using EEG. Using a publicly available multimodal dataset (OpenNeuro) of EEG and ECG recorded during working-memory and listening tasks, features of HRV and Catch22 descriptors are extracted from ECG, and spectral band-power with Catch22 features from EEG. A cross-modal regression framework based on XGBoost was trained to map ECG-derived HRV representations to EEG-derived cognitive features. In order to address data sparsity and model brain-heart interactions, we integrated the PSV-SDG to produce EEG-conditioned synthetic HRV time series.This addresses the challenge of inferring cognitive load solely from ECG-derived features using a combination of multimodal learning, signal processing, and synthetic data generation. These outcomes form a basis for light, interpretable machine learning models that are implemented through wearable biosensors in non-lab environments. Synthetic HRV inclusion enhances robustness, particularly in sparse data situations. Overall, this work is an initiation for building low-cost, explainable, and real-time cognitive monitoring systems for mental health, education, and human-computer interaction, with a focus on ageing and clinical populations.
Similar Papers
Unveiling the Heart-Brain Connection: An Analysis of ECG in Cognitive Performance
Machine Learning (CS)
Heart signals can show how hard your brain is working.
Explainable and externally validated machine learning for neurocognitive diagnosis via electrocardiograms
Signal Processing
Heart signals can help find brain problems early.
Leveraging Foundational Models and Simple Fusion for Multi-modal Physiological Signal Analysis
Machine Learning (CS)
Combines heart and brain signals for better health insights.