Score: 0

MoE-DisCo:Low Economy Cost Training Mixture-of-Experts Models

Published: January 11, 2026 | arXiv ID: 2601.06857v1

By: Xin Ye , Daning Cheng , Boyang Zhang and more

Potential Business Impact:

Trains big AI models cheaper and faster.

Business Areas:
MOOC Education, Software

Training large-scale Mixture-of-Experts (MoE) models typically requires high-memory, high-bandwidth GPUs (e.g., A100), and their high cost has become a major barrier to large-model training. In contrast, affordable hardware is low-cost but constrained by memory capacity and bandwidth, making it unsuitable for direct LLM training. To address this, we propose MoE-DisCo (Mixture-of-Experts with Disentangled Clustering and Coordination), a staged training framework. MoE-DisCo decomposes the MoE model into multiple dense submodels, each consisting of a shared backbone and a single expert, and partitions the training data into subsets using unsupervised clustering. Each submodel is trained independently and in parallel on its assigned data subset using low-cost devices, without any inter-device communication. Subsequently, all experts are integrated into a complete MoE model and fine-tuned globally for a short period on high-memory, high-bandwidth GPUs. Experiments show that our method matches or even surpasses full-parameter training in performance across multiple downstream tasks, loss function, and perplexity (PPL), while reducing training cost by 47.6 percent to 69.5 percent on Qwen1.5-MoE-2.7B and Llama-MoE-3.5B across different datasets.

Page Count
11 pages

Category
Computer Science:
Machine Learning (CS)