Score: 0

Hallucinations Live in Variance

Published: January 11, 2026 | arXiv ID: 2601.07058v1

By: Aaron R. Flouro, Shawn P. Chadwick

Potential Business Impact:

Makes AI answers more trustworthy, not just right.

Business Areas:
Semantic Search Internet Services

Benchmarks measure whether a model is correct. They do not measure whether a model is reliable. This distinction is largely academic for single-shot inference, but becomes critical for agentic AI systems, where a single rephrased prompt can trigger cascading failures in multi-step execution. Yet this form of instability is not captured by existing evaluations. Hallucinations live in variance: they arise when semantically equivalent prompts activate inconsistent internal pathways, producing divergent outputs. Consistent but incorrect outputs reflect bias or missing knowledge; confident guessing reflects calibration failure. Neither constitutes hallucination under this definition. When error is variance-dominated, reducing redundant pathways improves reliability without adding knowledge. We formalize this through Semantic Stability (SS), measured via Paraphrase Consistency (PC@k): generate k paraphrases, greedy decode each, compute mode agreement. SS is a diagnostic for variance-driven unreliability, not a method for improving correctness. We show that a dense Qwen3-0.6B agrees with itself only 23.8% of the time; at 32% sparsity, agreement jumps to 55.9%. A phase diagram reveals the sweet spot where variance reduction outpaces bias accumulation, and regimes where stability collapses onto wrong answers.

Page Count
8 pages

Category
Computer Science:
Machine Learning (CS)