Score: 0

MeepleLM: A Virtual Playtester Simulating Diverse Subjective Experiences

Published: January 12, 2026 | arXiv ID: 2601.07251v1

By: Zizhen Li , Chuanhao Li , Yibin Wang and more

Recent advancements have expanded the role of Large Language Models in board games from playing agents to creative co-designers. However, a critical gap remains: current systems lack the capacity to offer constructive critique grounded in the emergent user experience. Bridging this gap is fundamental for harmonizing Human-AI collaboration, as it empowers designers to refine their creations via external perspectives while steering models away from biased or unpredictable outcomes. Automating critique for board games presents two challenges: inferring the latent dynamics connecting rules to gameplay without an explicit engine, and modeling the subjective heterogeneity of diverse player groups. To address these, we curate a dataset of 1,727 structurally corrected rulebooks and 150K reviews selected via quality scoring and facet-aware sampling. We augment this data with Mechanics-Dynamics-Aesthetics (MDA) reasoning to explicitly bridge the causal gap between written rules and player experience. We further distill player personas and introduce MeepleLM, a specialized model that internalizes persona-specific reasoning patterns to accurately simulate the subjective feedback of diverse player archetypes. Experiments demonstrate that MeepleLM significantly outperforms latest commercial models (e.g., GPT-5.1, Gemini3-Pro) in community alignment and critique quality, achieving a 70% preference rate in user studies assessing utility. MeepleLM serves as a reliable virtual playtester for general interactive systems, marking a pivotal step towards audience-aligned, experience-aware Human-AI collaboration.

Category
Computer Science:
Human-Computer Interaction