Score: 0

Simulated Annealing-based Candidate Optimization for Batch Acquisition Functions

Published: January 12, 2026 | arXiv ID: 2601.07258v1

By: Sk Md Ahnaf Akif Alvi, Raymundo Arróyave, Douglas Allaire

Potential Business Impact:

Finds better answers for complex problems faster.

Business Areas:
A/B Testing Data and Analytics

Bayesian Optimization with multi-objective acquisition functions such as q-Expected Hypervolume Improvement (qEHVI) requires efficient candidate optimization to maximize acquisition function values. Traditional approaches rely on continuous optimization methods like Sequential Least Squares Programming (SLSQP) for candidate selection. However, these gradient-based methods can become trapped in local optima, particularly in complex or high-dimensional objective landscapes. This paper presents a simulated annealing-based approach for candidate optimization in batch acquisition functions as an alternative to conventional continuous optimization methods. We evaluate our simulated annealing approach against SLSQP across four benchmark multi-objective optimization problems: ZDT1 (30D, 2 objectives), DTLZ2 (7D, 3 objectives), Kursawe (3D, 2 objectives), and Latent-Aware (4D, 2 objectives). Our results demonstrate that simulated annealing consistently achieves superior hypervolume performance compared to SLSQP in most test functions. The improvement is particularly pronounced for DTLZ2 and Latent-Aware problems, where simulated annealing reaches significantly higher hypervolume values and maintains better convergence characteristics. The histogram analysis of objective space coverage further reveals that simulated annealing explores more diverse and optimal regions of the Pareto front. These findings suggest that metaheuristic optimization approaches like simulated annealing can provide more robust and effective candidate optimization for multi-objective Bayesian optimization, offering a promising alternative to traditional gradient-based methods for batch acquisition function optimization.

Country of Origin
🇺🇸 United States

Page Count
12 pages

Category
Computer Science:
Machine Learning (CS)