From Landslide Conditioning Factors to Satellite Embeddings: Evaluating the Utilisation of Google AlphaEarth for Landslide Susceptibility Mapping using Deep Learning
By: Yusen Cheng, Qinfeng Zhu, Lei Fan
Potential Business Impact:
Predicts landslides better using Earth pictures.
Data-driven landslide susceptibility mapping (LSM) typically relies on landslide conditioning factors (LCFs), whose availability, heterogeneity, and preprocessing-related uncertainties can constrain mapping reliability. Recently, Google AlphaEarth (AE) embeddings, derived from multi-source geospatial observations, have emerged as a unified representation of Earth surface conditions. This study evaluated the potential of AE embeddings as alternative predictors for LSM. Two AE representations, including retained principal components and the full set of 64 embedding bands, were systematically compared with conventional LCFs across three study areas (Nantou County, Taiwan; Hong Kong; and part of Emilia-Romagna, Italy) using three deep learning models (CNN1D, CNN2D, and Vision Transformer). Performance was assessed using multiple evaluation metrics, ROC-AUC analysis, error statistics, and spatial pattern assessment. Results showed that AE-based models consistently outperformed LCFs across all regions and models, yielding higher F1-scores, AUC values, and more stable error distributions. Such improvement was most pronounced when using the full 64-band AE representation, with F1-score improvements of approximately 4% to 15% and AUC increased ranging from 0.04 to 0.11, depending on the study area and model. AE-based susceptibility maps also exhibited clearer spatial correspondence with observed landslide occurrences and enhanced sensitivity to localised landslide-prone conditions. Performance improvements were more evident in Nantou and Emilia than in Hong Kong, revealing that closer temporal alignment between AE embeddings and landslide inventories may lead to more effective LSM outcomes. These findings highlight the strong potential of AE embeddings as a standardised and information-rich alternative to conventional LCFs for LSM.
Similar Papers
Utilizing Earth Foundation Models to Enhance the Simulation Performance of Hydrological Models with AlphaEarth Embeddings
Machine Learning (CS)
Helps predict river water levels anywhere.
Landslide Hazard Mapping with Geospatial Foundation Models: Geographical Generalizability, Data Scarcity, and Band Adaptability
CV and Pattern Recognition
Maps landslides better, even with less data.
Scalable Geospatial Data Generation Using AlphaEarth Foundations Model
Machine Learning (CS)
Maps Earth's plants everywhere, not just one place.