Score: 0

Software-Hardware Co-optimization for Modular E2E AV Paradigm: A Unified Framework of Optimization Approaches, Simulation Environment and Evaluation Metrics

Published: January 12, 2026 | arXiv ID: 2601.07393v1

By: Chengzhi Ji , Xingfeng Li , Zhaodong Lv and more

Modular end-to-end (ME2E) autonomous driving paradigms combine modular interpretability with global optimization capability and have demonstrated strong performance. However, existing studies mainly focus on accuracy improvement, while critical system-level factors such as inference latency and energy consumption are often overlooked, resulting in increasingly complex model designs that hinder practical deployment. Prior efforts on model compression and acceleration typically optimize either the software or hardware side in isolation. Software-only optimization cannot fundamentally remove intermediate tensor access and operator scheduling overheads, whereas hardware-only optimization is constrained by model structure and precision. As a result, the real-world benefits of such optimizations are often limited. To address these challenges, this paper proposes a reusable software and hardware co-optimization and closed-loop evaluation framework for ME2E autonomous driving inference. The framework jointly integrates software-level model optimization with hardware-level computation optimization under a unified system-level objective. In addition, a multidimensional evaluation metric is introduced to assess system performance by jointly considering safety, comfort, efficiency, latency, and energy, enabling quantitative comparison of different optimization strategies. Experiments across multiple ME2E autonomous driving stacks show that the proposed framework preserves baseline-level driving performance while significantly reducing inference latency and energy consumption, achieving substantial overall system-level improvements. These results demonstrate that the proposed framework provides practical and actionable guidance for efficient deployment of ME2E autonomous driving systems.

Category
Computer Science:
Artificial Intelligence