Score: 0

Nonparametric Kernel Clustering with Bandit Feedback

Published: January 12, 2026 | arXiv ID: 2601.07535v1

By: Victor Thuot , Sebastian Vogt , Debarghya Ghoshdastidar and more

Potential Business Impact:

Groups similar items using smart guessing.

Business Areas:
A/B Testing Data and Analytics

Clustering with bandit feedback refers to the problem of partitioning a set of items, where the clustering algorithm can sequentially query the items to receive noisy observations. The problem is formally posed as the task of partitioning the arms of an N-armed stochastic bandit according to their underlying distributions, grouping two arms together if and only if they share the same distribution, using samples collected sequentially and adaptively. This setting has gained attention in recent years due to its applicability in recommendation systems and crowdsourcing. Existing works on clustering with bandit feedback rely on a strong assumption that the underlying distributions are sub-Gaussian. As a consequence, the existing methods mainly cover settings with linearly-separable clusters, which has little practical relevance. We introduce a framework of ``nonparametric clustering with bandit feedback'', where the underlying arm distributions are not constrained to any parametric, and hence, it is applicable for active clustering of real-world datasets. We adopt a kernel-based approach, which allows us to reformulate the nonparametric problem as the task of clustering the arms according to their kernel mean embeddings in a reproducing kernel Hilbert space (RKHS). Building on this formulation, we introduce the KABC algorithm with theoretical correctness guarantees and analyze its sampling budget. We introduce a notion of signal-to-noise ratio for this problem that depends on the maximum mean discrepancy (MMD) between the arm distributions and on their variance in the RKHS. Our algorithm is adaptive to this unknown quantity: it does not require it as an input yet achieves instance-dependent guarantees.

Page Count
14 pages

Category
Statistics:
Machine Learning (Stat)