Score: 0

TeeMAF: A TEE-Based Mutual Attestation Framework for On-Chain and Off-Chain Functions in Blockchain DApps

Published: January 12, 2026 | arXiv ID: 2601.07726v1

By: Xiangyu Liu, Brian Lee, Yuansong Qiao

Potential Business Impact:

Makes apps on the internet trustworthy and safe.

Business Areas:
Ethereum Blockchain and Cryptocurrency

The rapid development of Internet of Things (IoT) technology has led to growing concerns about data security and user privacy in the interactions within distributed systems. Decentralized Applications (DApps) in distributed systems consist of on-chain and off-chain functions, where on-chain functions are smart contracts running in the blockchain network, while off-chain functions operate outside the blockchain. Since smart contracts cannot access off-chain information, they cannot verify whether the off-chain functions, i.e. the software components, they interact with have been tampered or not. As a result, establishing mutual trust between the on-chain smart contracts and the off-chain functions remains a significant challenge. To address the challenge, this paper introduces TeeMAF, a generic framework for mutual attestation between on-chain and off-chain functions, leveraging Trusted Execution Environments (TEE), specifically Intel Software Guard Extensions (SGX), SCONE (a TEE container on top of Intel SGX), and remote attestation technologies. This ensures that the deployed off-chain functions of a DApp execute in a provably secure computing environment and achieve mutual attestation with the interacting on-chain functions. Through a security analysis of TeeMAF, the reliability of deployed DApps can be verified, ensuring their correct execution. Furthermore, based on this framework, this paper proposes a decentralized resource orchestration platform (a specific DApp) for deploying applications over untrusted environments. The system is implemented on Ethereum and benchmarked using Hyperledger Caliper. Performance evaluation focusing on throughput and latency demonstrates that, compared to platforms without a mutual attestation scheme, the performance overhead remains within an acceptable range.

Page Count
13 pages

Category
Computer Science:
Cryptography and Security