Score: 1

Beyond External Guidance: Unleashing the Semantic Richness Inside Diffusion Transformers for Improved Training

Published: January 12, 2026 | arXiv ID: 2601.07773v1

By: Lingchen Sun , Rongyuan Wu , Zhengqiang Zhang and more

Potential Business Impact:

Teaches computers to draw pictures faster, no help needed.

Business Areas:
Semantic Search Internet Services

Recent works such as REPA have shown that guiding diffusion models with external semantic features (e.g., DINO) can significantly accelerate the training of diffusion transformers (DiTs). However, this requires the use of pretrained external networks, introducing additional dependencies and reducing flexibility. In this work, we argue that DiTs actually have the power to guide the training of themselves, and propose \textbf{Self-Transcendence}, a simple yet effective method that achieves fast convergence using internal feature supervision only. It is found that the slow convergence in DiT training primarily stems from the difficulty of representation learning in shallow layers. To address this, we initially train the DiT model by aligning its shallow features with the latent representations from the pretrained VAE for a short phase (e.g., 40 epochs), then apply classifier-free guidance to the intermediate features, enhancing their discriminative capability and semantic expressiveness. These enriched internal features, learned entirely within the model, are used as supervision signals to guide a new DiT training. Compared to existing self-contained methods, our approach brings a significant performance boost. It can even surpass REPA in terms of generation quality and convergence speed, but without the need for any external pretrained models. Our method is not only more flexible for different backbones but also has the potential to be adopted for a wider range of diffusion-based generative tasks. The source code of our method can be found at https://github.com/csslc/Self-Transcendence.

Repos / Data Links

Page Count
14 pages

Category
Computer Science:
CV and Pattern Recognition