Enhancing Self-Correction in Large Language Models through Multi-Perspective Reflection
By: Mariana Costa , Alberlucia Rafael Soarez , Daniel Kim and more
While Chain-of-Thought (CoT) prompting advances LLM reasoning, challenges persist in consistency, accuracy, and self-correction, especially for complex or ethically sensitive tasks. Existing single-dimensional reflection methods offer insufficient improvements. We propose MyGO Poly-Reflective Chain-of-Thought (PR-CoT), a novel methodology employing structured multi-perspective reflection. After initial CoT, PR-CoT guides the LLM to self-assess its reasoning across multiple predefined angles: logical consistency, information completeness, biases/ethics, and alternative solutions. Implemented purely via prompt engineering, this process refines the initial CoT into a more robust and accurate final answer without model retraining. Experiments across arithmetic, commonsense, ethical decision-making, and logical puzzles, using GPT-three point five and GPT-four models, demonstrate PR-CoT's superior performance. It significantly outperforms traditional CoT and existing reflection methods in logical consistency and error correction, with notable gains in nuanced domains like ethical decision-making. Ablation studies, human evaluations, and qualitative analyses further validate the contribution of each reflection perspective and the overall efficacy of our poly-reflective paradigm in fostering more reliable LLM reasoning.
Similar Papers
MyGO Multiplex CoT: A Method for Self-Reflection in Large Language Models via Double Chain of Thought Thinking
Computation and Language
Makes AI think twice to give better answers.
From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
Computation and Language
Helps AI "think step-by-step" to solve harder problems.
From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
Computation and Language
Helps AI "think" step-by-step to solve harder problems.