Score: 0

Affordable Data Collection System for UAVs Taxi Vibration Testing

Published: January 12, 2026 | arXiv ID: 2601.07783v1

By: Chaoyi Lin Yang, Gabriele Dessena, Oscar E. Bonilla-Manrique

Structural vibration testing plays a key role in aerospace engineering for evaluating dynamic behaviour, ensuring reliability and verifying structural integrity. These tests rely on accurate and robust data acquisition systems (DAQ) to capture high-quality acceleration data. However, commercial DAQs that provide the required performance and features are often expensive and complex, limiting their accessibility for small-scale research and experimental applications. This work presents the design and experimental validation of an affordable and in-house-developed acceleration DAQ, tested on a small fixed-wing UAV through several Taxi Vibration Test (TVT) runs and ambient vibration measurements. The proposed system integrates several OrangePi 3 LTS single-board computers with multiple LSM6DS3TR-C MEMS inertial measurement units operating simultaneously via an Inter-Integrated Circuit (I2C) communication interface, managed under a Python-based master/slave architecture. Data is acquired at a stable sampling rate of approximately 208 Hz and post-processed using Welch's method to estimate their Power Spectral Density (PSD). Results confirm the system ability to provide consistent multi-sensor acceleration data and repeatable PSD profiles under the same test conditions; thus, demonstrating its reliability. With a total hardware cost below 600 EUR (approximately 690 USD), the developed DAQ offers a compact, scalable and cost-effective alternative for aerospace vibration analysis and structural testing.

Category
Electrical Engineering and Systems Science:
Systems and Control