Score: 0

Revealing the Attention Floating Mechanism in Masked Diffusion Models

Published: January 12, 2026 | arXiv ID: 2601.07894v1

By: Xin Dai , Pengcheng Huang , Zhenghao Liu and more

Masked diffusion models (MDMs), which leverage bidirectional attention and a denoising process, are narrowing the performance gap with autoregressive models (ARMs). However, their internal attention mechanisms remain under-explored. This paper investigates the attention behaviors in MDMs, revealing the phenomenon of Attention Floating. Unlike ARMs, where attention converges to a fixed sink, MDMs exhibit dynamic, dispersed attention anchors that shift across denoising steps and layers. Further analysis reveals its Shallow Structure-Aware, Deep Content-Focused attention mechanism: shallow layers utilize floating tokens to build a global structural framework, while deeper layers allocate more capability toward capturing semantic content. Empirically, this distinctive attention pattern provides a mechanistic explanation for the strong in-context learning capabilities of MDMs, allowing them to double the performance compared to ARMs in knowledge-intensive tasks. All codes and datasets are available at https://github.com/NEUIR/Attention-Floating.

Category
Computer Science:
Machine Learning (CS)