Score: 0

When Models Know When They Do Not Know: Calibration, Cascading, and Cleaning

Published: January 12, 2026 | arXiv ID: 2601.07965v1

By: Chenjie Hao , Weyl Lu , Yuko Ishiwaka and more

Potential Business Impact:

Helps AI know when it's wrong.

Business Areas:
Machine Learning Artificial Intelligence, Data and Analytics, Software

When a model knows when it does not know, many possibilities emerge. The first question is how to enable a model to recognize that it does not know. A promising approach is to use confidence, computed from the model's internal signals, to reflect its ignorance. Prior work in specific domains has shown that calibration can provide reliable confidence estimates. In this work, we propose a simple, effective, and universal training-free method that applies to both vision and language models, performing model calibration, cascading, and data cleaning to better exploit a model's ability to recognize when it does not know. We first highlight two key empirical observations: higher confidence corresponds to higher accuracy within a single model, and models calibrated on the validation set remain calibrated on a held-out test set. These findings empirically establish the reliability and comparability of calibrated confidence. Building on this, we introduce two applications: (1) model cascading with calibrated advantage routing and (2) data cleaning based on model ensemble. Using the routing signal derived from the comparability of calibrated confidences, we cascade large and small models to improve efficiency with almost no compromise in accuracy, and we further cascade two models of comparable scale to achieve performance beyond either model alone. Leveraging multiple experts and their calibrated confidences, we design a simple yet effective data-cleaning method that balances precision and detection rate to identify mislabeled samples in ImageNet and Massive Multitask Language Understanding (MMLU) datasets. Our results demonstrate that enabling models to recognize when they do not know is a practical step toward more efficient, reliable, and trustworthy AI.

Page Count
20 pages

Category
Computer Science:
Artificial Intelligence