High-Fidelity Modeling of Stochastic Chemical Dynamics on Complex Manifolds: A Multi-Scale SIREN-PINN Framework for the Curvature-Perturbed Ginzburg-Landau Equation
By: Julian Evan Chrisnanto , Salsabila Rahma Alia , Nurfauzi Fadillah and more
The accurate identification and control of spatiotemporal chaos in reaction-diffusion systems remains a grand challenge in chemical engineering, particularly when the underlying catalytic surface possesses complex, unknown topography. In the \textit{Defect Turbulence} regime, system dynamics are governed by topological phase singularities (spiral waves) whose motion couples to manifold curvature via geometric pinning. Conventional Physics-Informed Neural Networks (PINNs) using ReLU or Tanh activations suffer from fundamental \textit{spectral bias}, failing to resolve high-frequency gradients and causing amplitude collapse or phase drift. We propose a Multi-Scale SIREN-PINN architecture leveraging periodic sinusoidal activations with frequency-diverse initialization, embedding the appropriate inductive bias for wave-like physics directly into the network structure. This enables simultaneous resolution of macroscopic wave envelopes and microscopic defect cores. Validated on the complex Ginzburg-Landau equation evolving on latent Riemannian manifolds, our architecture achieves relative state prediction error $ε_{L_2} \approx 1.92 \times 10^{-2}$, outperforming standard baselines by an order of magnitude while preserving topological invariants ($|ΔN_{defects}| < 1$). We solve the ill-posed \textit{inverse pinning problem}, reconstructing hidden Gaussian curvature fields solely from partial observations of chaotic wave dynamics (Pearson correlation $ρ= 0.965$). Training dynamics reveal a distinctive Spectral Phase Transition at epoch $\sim 2,100$, where cooperative minimization of physics and geometry losses drives the solver to Pareto-optimal solutions. This work establishes a new paradigm for Geometric Catalyst Design, offering a mesh-free, data-driven tool for identifying surface heterogeneity and engineering passive control strategies in turbulent chemical reactors.
Similar Papers
Physics-informed neural networks for high-dimensional solutions and snaking bifurcations in nonlinear lattices
Numerical Analysis
Helps computers understand tricky math patterns.
Weak Physics Informed Neural Networks for Geometry Compatible Hyperbolic Conservation Laws on Manifolds
Numerical Analysis
Solves hard math problems on curved shapes.
Development and Analysis of Chien-Physics-Informed Neural Networks for Singular Perturbation Problems
Numerical Analysis
Solves hard math problems better than before.