Delaunay Triangulations with Predictions
By: Sergio Cabello, Timothy M. Chan, Panos Giannopoulos
We investigate algorithms with predictions in computational geometry, specifically focusing on the basic problem of computing 2D Delaunay triangulations. Given a set $P$ of $n$ points in the plane and a triangulation $G$ that serves as a "prediction" of the Delaunay triangulation, we would like to use $G$ to compute the correct Delaunay triangulation $\textit{DT}(P)$ more quickly when $G$ is "close" to $\textit{DT}(P)$. We obtain a variety of results of this type, under different deterministic and probabilistic settings, including the following: 1. Define $D$ to be the number of edges in $G$ that are not in $\textit{DT}(P)$. We present a deterministic algorithm to compute $\textit{DT}(P)$ from $G$ in $O(n + D\log^3 n)$ time, and a randomized algorithm in $O(n+D\log n)$ expected time, the latter of which is optimal in terms of $D$. 2. Let $R$ be a random subset of the edges of $\textit{DT}(P)$, where each edge is chosen independently with probability $ρ$. Suppose $G$ is any triangulation of $P$ that contains $R$. We present an algorithm to compute $\textit{DT}(P)$ from $G$ in $O(n\log\log n + n\log(1/ρ))$ time with high probability. 3. Define $d_{\mbox{\scriptsize\rm vio}}$ to be the maximum number of points of $P$ strictly inside the circumcircle of a triangle in $G$ (the number is 0 if $G$ is equal to $\textit{DT}(P)$). We present a deterministic algorithm to compute $\textit{DT}(P)$ from $G$ in $O(n\log^*n + n\log d_{\mbox{\scriptsize\rm vio}})$ time. We also obtain results in similar settings for related problems such as 2D Euclidean minimum spanning trees, and hope that our work will open up a fruitful line of future research.
Similar Papers
Exact Algorithms for Minimum Dilation Triangulation
Computational Geometry
Makes computer maps show shortest paths better.
Computing the Intrinsic Delaunay Triangulation of a Closed Polyhedral Surface
Computational Geometry
Finds shortest paths on weird shapes faster.
Computing Diverse and Nice Triangulations
Computational Geometry
Find many different ways to divide shapes.