Reverse Flow Matching: A Unified Framework for Online Reinforcement Learning with Diffusion and Flow Policies
By: Zeyang Li, Sunbochen Tang, Navid Azizan
Diffusion and flow policies are gaining prominence in online reinforcement learning (RL) due to their expressive power, yet training them efficiently remains a critical challenge. A fundamental difficulty in online RL is the lack of direct samples from the target distribution; instead, the target is an unnormalized Boltzmann distribution defined by the Q-function. To address this, two seemingly distinct families of methods have been proposed for diffusion policies: a noise-expectation family, which utilizes a weighted average of noise as the training target, and a gradient-expectation family, which employs a weighted average of Q-function gradients. Yet, it remains unclear how these objectives relate formally or if they can be synthesized into a more general formulation. In this paper, we propose a unified framework, reverse flow matching (RFM), which rigorously addresses the problem of training diffusion and flow models without direct target samples. By adopting a reverse inferential perspective, we formulate the training target as a posterior mean estimation problem given an intermediate noisy sample. Crucially, we introduce Langevin Stein operators to construct zero-mean control variates, deriving a general class of estimators that effectively reduce importance sampling variance. We show that existing noise-expectation and gradient-expectation methods are two specific instances within this broader class. This unified view yields two key advancements: it extends the capability of targeting Boltzmann distributions from diffusion to flow policies, and enables the principled combination of Q-value and Q-gradient information to derive an optimal, minimum-variance estimator, thereby improving training efficiency and stability. We instantiate RFM to train a flow policy in online RL, and demonstrate improved performance on continuous-control benchmarks compared to diffusion policy baselines.
Similar Papers
ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning
Robotics
Teaches robots to move and grab better.
Reinforcement Learning for Flow-Matching Policies
Machine Learning (CS)
Robots learn to do tasks better than humans.
One-Step Generative Policies with Q-Learning: A Reformulation of MeanFlow
Machine Learning (CS)
Teaches robots to learn from past actions.