One-Shot Identification with Different Neural Network Approaches
By: Janis Mohr, Jörg Frochte
Convolutional neural networks (CNNs) have been widely used in the computer vision community, significantly improving the state-of-the-art. But learning good features often is computationally expensive in machine learning settings and is especially difficult when there is a lack of data. One-shot learning is one such area where only limited data is available. In one-shot learning, predictions have to be made after seeing only one example from one class, which requires special techniques. In this paper we explore different approaches to one-shot identification tasks in different domains including an industrial application and face recognition. We use a special technique with stacked images and use siamese capsule networks. It is encouraging to see that the approach using capsule architecture achieves strong results and exceeds other techniques on a wide range of datasets from industrial application to face recognition benchmarks while being easy to use and optimise.
Similar Papers
Supervised Contrastive Learning for Few-Shot AI-Generated Image Detection and Attribution
CV and Pattern Recognition
Finds fake pictures made by AI.
Supervised Contrastive Learning for Few-Shot AI-Generated Image Detection and Attribution
CV and Pattern Recognition
Finds fake pictures made by AI.
A Comparative Study of Custom CNNs, Pre-trained Models, and Transfer Learning Across Multiple Visual Datasets
CV and Pattern Recognition
Transfer learning finds best image matches.