Score: 0

MMLGNet: Cross-Modal Alignment of Remote Sensing Data using CLIP

Published: January 13, 2026 | arXiv ID: 2601.08420v1

By: Aditya Chaudhary , Sneha Barman , Mainak Singha and more

In this paper, we propose a novel multimodal framework, Multimodal Language-Guided Network (MMLGNet), to align heterogeneous remote sensing modalities like Hyperspectral Imaging (HSI) and LiDAR with natural language semantics using vision-language models such as CLIP. With the increasing availability of multimodal Earth observation data, there is a growing need for methods that effectively fuse spectral, spatial, and geometric information while enabling semantic-level understanding. MMLGNet employs modality-specific encoders and aligns visual features with handcrafted textual embeddings in a shared latent space via bi-directional contrastive learning. Inspired by CLIP's training paradigm, our approach bridges the gap between high-dimensional remote sensing data and language-guided interpretation. Notably, MMLGNet achieves strong performance with simple CNN-based encoders, outperforming several established multimodal visual-only methods on two benchmark datasets, demonstrating the significant benefit of language supervision. Codes are available at https://github.com/AdityaChaudhary2913/CLIP_HSI.

Category
Computer Science:
CV and Pattern Recognition