Score: 0

DiffMM: Efficient Method for Accurate Noisy and Sparse Trajectory Map Matching via One Step Diffusion

Published: January 13, 2026 | arXiv ID: 2601.08482v1

By: Chenxu Han, Sean Bin Yang, Jilin Hu

Map matching for sparse trajectories is a fundamental problem for many trajectory-based applications, e.g., traffic scheduling and traffic flow analysis. Existing methods for map matching are generally based on Hidden Markov Model (HMM) or encoder-decoder framework. However, these methods continue to face significant challenges when handling noisy or sparsely sampled GPS trajectories. To address these limitations, we propose DiffMM, an encoder-diffusion-based map matching framework that produces effective yet efficient matching results through a one-step diffusion process. We first introduce a road segment-aware trajectory encoder that jointly embeds the input trajectory and its surrounding candidate road segments into a shared latent space through an attention mechanism. Next, we propose a one step diffusion method to realize map matching through a shortcut model by leveraging the joint embedding of the trajectory and candidate road segments as conditioning context. We conduct extensive experiments on large-scale trajectory datasets, demonstrating that our approach consistently outperforms state-of-the-art map matching methods in terms of both accuracy and efficiency, particularly for sparse trajectories and complex road network topologies.

Category
Computer Science:
Machine Learning (CS)