Resisting Manipulative Bots in Memecoin Copy Trading: A Multi-Agent Approach with Chain-of-Thought Reasoning
By: Yichen Luo , Yebo Feng , Jiahua Xu and more
The launch of \$Trump coin ignited a wave in meme coin investment. Copy trading, as a strategy-agnostic approach that eliminates the need for deep trading knowledge, quickly gains widespread popularity in the meme coin market. However, copy trading is not a guarantee of profitability due to the prevalence of manipulative bots, the uncertainty of the followed wallets' future performance, and the lag in trade execution. Recently, large language models (LLMs) have shown promise in financial applications by effectively understanding multi-modal data and producing explainable decisions. However, a single LLM struggles with complex, multi-faceted tasks such as asset allocation. These challenges are even more pronounced in cryptocurrency markets, where LLMs often lack sufficient domain-specific knowledge in their training data. To address these challenges, we propose an explainable multi-agent system for meme coin copy trading. Inspired by the structure of an asset management team, our system decomposes the complex task into subtasks and coordinates specialized agents to solve them collaboratively. Employing few-shot chain-of-though (CoT) prompting, each agent acquires professional meme coin trading knowledge, interprets multi-modal data, and generates explainable decisions. Using a dataset of 1,000 meme coin projects' transaction data, our empirical evaluation shows that the proposed multi-agent system outperforms both traditional machine learning models and single LLMs, achieving 73% and 70% precision in identifying high-quality meme coin projects and key opinion leader (KOL) wallets, respectively. The selected KOLs collectively generated a total profit of \$500,000 across these projects.
Similar Papers
LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management
Trading & Market Microstructure
Helps computers pick winning crypto coins.
An Adaptive Multi Agent Bitcoin Trading System
Portfolio Management
Teaches computers to trade money better with feedback.
An Adaptive Multi Agent Bitcoin Trading System
Portfolio Management
AI learns to trade money better with feedback.