Efficient Parameter Calibration of Numerical Weather Prediction Models via Evolutionary Sequential Transfer Optimization
By: Heping Fang, Peng Yang
The configuration of physical parameterization schemes in Numerical Weather Prediction (NWP) models plays a critical role in determining the accuracy of the forecast. However, existing parameter calibration methods typically treat each calibration task as an isolated optimization problem. This approach suffers from prohibitive computational costs and necessitates performing iterative searches from scratch for each task, leading to low efficiency in sequential calibration scenarios. To address this issue, we propose the SEquential Evolutionary Transfer Optimization (SEETO) algorithm driven by the representations of the meteorological state. First, to accurately measure the physical similarity between calibration tasks, a meteorological state representation extractor is introduced to map high-dimensional meteorological fields into latent representations. Second, given the similarity in the latent space, a bi-level adaptive knowledge transfer mechanism is designed. At the solution level, superior populations from similar historical tasks are reused to achieve a "warm start" for optimization. At the model level, an ensemble surrogate model based on source task data is constructed to assist the search, employing an adaptive weighting mechanism to dynamically balance the contributions of source domain knowledge and target domain data. Extensive experiments across 10 distinct calibration tasks, which span varying source-target similarities, highlight SEETO's superior efficiency. Under a strict budget of 20 expensive evaluations, SEETO achieves a 6% average improvement in Hypervolume (HV) over two state-of-the-art baselines. Notably, to match SEETO's performance at this stage, the comparison algorithms would require an average of 64% and 28% additional evaluations, respectively. This presents a new paradigm for the efficient and accurate automated calibration of NWP model parameters.
Similar Papers
Bayesian optimization for re-analysis and calibration of extreme sea state events simulated with a spectral third-generation wave model
Atmospheric and Oceanic Physics
Makes ocean wave predictions more accurate.
Satori-SWE: Evolutionary Test-Time Scaling for Sample-Efficient Software Engineering
Computation and Language
Makes small AI models solve big coding problems.
Climate Model Tuning with Online Synchronization-Based Parameter Estimation
Chaotic Dynamics
Makes weather forecasts more accurate, faster.